Received: January 12, 1987; accepted: April 21, 1987

SYNTHESIS OF THE UNSYMMETRICAL DISELENANES CF₃SeSeCF₂Cl AND CF₃SeSeCH₃

WILLY GOMBLER and GERD BOLLMANN

Anorganische Chemie II, Ruhr-Universität Bochum, D-4630 Bochum, and Fachbereich Naturwissenschaftliche Technik, Fachhochschule Ostfriesland, D-2970 Emden (F.R.G.)

SUMMARY

Chlorodifluoromethyl(trifluoromethyl)diselenane, CF₃SeSeCF₂Cl, has been prepared by the reaction of CF₃SeCl with Se=CF₂. CF₃SeSeCH₃ has been synthesized via a new route from CF₃SeSeCF₃ and CH₃SeSeCH₃. CF₃SeSeCF₂Cl is unstable with respect to the symmetric diselenanes CF₃SeSeCF₃ and CF₂ClSeSeCF₂Cl. The new compound CF₃SeSeCF₂Cl has been characterized by ⁷⁷Se, ¹⁹F, and ¹³C NMR, IR, and mass spectra. Additional data from the ⁷⁷Se, ¹⁹F, ¹³C, and ¹H NMR spectra are reported for the known compounds CF₃SeSeCH₃ and CF₂ClSeSeCF₂Cl.

INTRODUCTION

In a current NMR spectroscopic study of the seleniumselenium coupling constant in symmetrical and unsymmetrical diselenanes, the compounds $CF_3SeSeCF_2Cl$ and $CF_3SeSeCH_3$ became of interest for comparison. While $CF_3SeSeCH_3$ had recently been prepared by the reaction of CF_3SeBr with CH_3SeH [1], $CF_3SeSeCF_2Cl$ was not known in the literature.

0022-1139/87/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

RESULTS AND DISCUSSION

We were able to synthesize $CF_3SeSeCF_2Cl$ by the reaction of CF_3SeCl with $Se=CF_2$. In this reaction the unstable and reactive compound $Se=CF_2$ [2, 3] is quantitatively inserted into the Se-Cl bond of CF_3SeCl , and $CF_3SeSeCF_2Cl$ is readily formed at low temperatures.

$CF_3 SeCl + Se=F_2 \longrightarrow CF_3 SeSeCF_2 Cl$

A new simple synthesis was found for $CF_3SeSeCH_3$. An equimolar mixture of $CH_3SeSeCH_3$ and $CF_3SeSeCF_3$ reacts slowly at room temperature to yield $CF_3SeSeCH_3$. The dismutation is completed after about one week. The progress of the reaction was observed by NMR spectroscopy, and the formation of $CF_3SeSeCH_3$ was proved by the known ¹⁹F and ¹H NMR data [1].

 $CH_3 SeSeCH_3 + CF_3 SeSeCF_3 \longrightarrow 2 CF_3 SeSeCH_3$

 $CF_3 SeSeCF_2 Cl$ is unstable with respect to the symmetrical diselenanes. About 50 % of the neat substance reacted during a period of four months at room temperature in a reaction according to the following equation. Another sample diluted with 10 to 15 % $C_6 D_6$ reacted under the same conditions only to an extent of about 20 %.

2 CF₃SeSeCF₂Cl \longrightarrow CF₃SeSeCF₃ + CF₂ClSeSeCF₂Cl

The different thermodynamic stabilities of the diselenanes are noteworthy. The compound with two perhalogenomethyl groups, $CF_3SeSeCF_2Cl$, is unstable with respect to the symmetrical diselenanes. The compound containing one CF_3 and one CH_3 group, $CF_3SeSeCH_3$, is more stable; it is formed from the two symmetric diselenanes.

Besides the well known compound $CF_3SeSeCF_3$, $CF_2ClSeSeCF_2Cl$ could be identified by its ¹⁹F NMR signal [3]. $CF_2ClSeSeCF_2Cl$ was also prepared after [3] for further characterization. The NMR data obtained from the ⁷⁷Se, ¹⁹F, ¹³C, and ¹H NMR spectra of

16

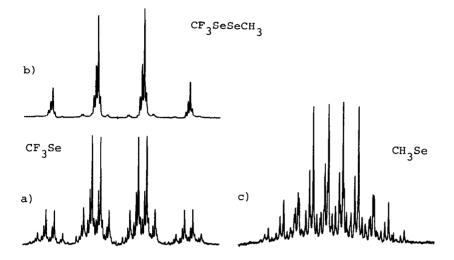
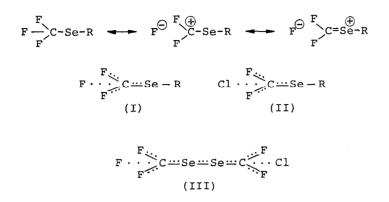


Fig. 1. ⁷⁷Se NMR spectrum of $CF_3SeSeCH_3$. CF_3Se : a) coupled spectrum, b) ¹H decoupled; c) CH_3Se group, coupled spectrum; the fine splitting in the spectra is attributed to isotope effects of neighbouring Se nuclei.

CF₃SeSeCF₂Cl, CF₃SeSeCH₃, and CF₂ClSeSeCF₂Cl are listed in Table I. The 77 Se NMR spectrum of CF3 SeSeCH3 is depicted in Fig. 1. The coupling constants ${}^{1}J(Se-Se)$ and ${}^{1}J(Se-C)$ are of particular interest. ${}^{1}J(Se-C)$ values are in general much larger in perhalogenoalkyl than in alkyl selenium compounds [5], and the coupling constants 'J(Se-Se) are considerably larger in bis(perhalogenoalkyl)diselenanes than in organyldiselenanes [6]. They reveal that in bis(perhalogenoalkyl)diselenanes multiple bond participation does not only extend over the F-C and C-Se bond, as has been found in CF_3 -E-R and CF_2Cl -E-R compounds (E = chalcogen, R = substituent) [7, 8], but over the whole molecule. Although the participation of π -bonding may be very small, the coupling constants ${}^{1}J(F-C)$, ${}^{1}J(Se-C)$ and ${}^{1}J(Se-Se)$ are extremely sensitive to changes in the bond order. Taking into account that the ability of fluorine to form a partial double bond with carbon is much more pronounced than the ability of chlorine, the following formulae may describe the electronic structure of CF3 substituted chalcogen compounds. The mesomeric formulae for CF3-Se-R compounds can be represented by the simplified formula I, analogous-


TABLE 1

δ(19F)	CF ₃ SeSeCF ₂ Cl		CF3SeSeCH3		CF2ClSeSeCF2C
	-37.7 -26.2	CF3 CF2C1	-38.2 -38.3	[1]	-25.2 -25.1 [3]
8 (¹ H)			2.58 2.3	[1]	
δ(13C)	118.6 115.9	CF3 CF2 C1	$\substack{118.7\\13.2}$	CF₃ CH₃	116.2
δ(⁷⁷ Se)	579 662	CF₃Se CF₂ClSe	575 269	CF₃S∈ CH₃S∈	
¹ J (FC)	337.6 349.2	CF3 CF2C1	337.3		349.8
1 J(CH)			143.6		
¹ J(SeC)	175.1 173.1	CF₃Se CF₂ClSe	189.6 71.7	CF₃Se CH₃Se	
¹ J(SeSe)	57.9		11.3		66.5
² J(SeF)	9.8 6.5	CF₃Se CF₂ClSe	20.1		5
²J(SeH)			13.0		
³J(SeF)	0 2.7	SeSeCF₂Cl SeSeCF₃	6.8		5
³J(SeH)			3.7		
⁵ J(FF)	4.0				5.4
⁵ J(FH)			$\begin{array}{c} 0.44 \\ 0.4 \end{array}$	[1]	
¹ \$\lambda 7 7 Se(13/12C)	-0.178 -0.250	CF₃Se CF₂ClSe	-0.205	5 CF₃Se	-0.257
1 ₄ 19F(13/12C)	-0.1428	CF₃Se			-0.1645
1 A 1 9 F (13/12C)	-0.1618	CF2ClSe			
1 A 1 9 F (3 7 / 3 5 C l)					-0.0067

NMR data of CF₃SeSeCF₂Cl, CF₃SeSeCH₃ and CF₂ClSeSeCF₂Cl

 ${}^{1}\Delta\,{}^{7\,7}\,Se$ and ${}^{1}\Delta\,{}^{1\,9}\,F$ values are isotope shifts. For definition and comparison see [4].

ly the same holds for $CF_2Cl-Se-R$ compounds (formula II). Perhalogenoalkyldiselenanes may be described, for example, by formula III.

EXPERIMENTAL

Synthesis of CF3SeSeCF2Cl

2.0 g SeCF₂ [3] and 2.84 g CF₃SeCl [9, 10] were condensed at -196 °C <u>in vacuo</u> into a glass tube (6 mm o.d.). The tube was sealed, warmed to -50 °C and shaken. During a few minutes at this temperature the colour of the mixture changed from red to yellow. Then the tube was warmed up to room temperature to allow the reaction to proceed quickly. After about two hours the tube was opened under vacuum with an "ampoule key" [11] and the substance quantitatively transferred into a NMR tube which was joined to a rotationally symmetrical valve [12]. The ¹⁹F and ⁷⁷Se NMR spectra showed that the product consisted of 96 % CF₃SeSeCF₂Cl and only 1 % CF₃SeCF₃ and 3 % CF₃SeSeCF₃ as by-products. The latter could be separated by trap to trap condensation as they are more volatile than CF₃SeSeCF₂Cl.

Analysis: Found C, 7.7, CF₃SeSeCF₂Cl requires C, 7.68 %. Vapour pressure, mbar (°C): 5.5 (0), 9.8 (9.4), 21.0 (24.0).

Mass spectrum: 314 M⁺ (69), 279 [M-C1]⁺ (30), 229 CF₃Se₂⁺ (30), 210 CF₂Se₂⁺ (4), 165 CF₂ClSe⁺ (17), 149 CF₃Se⁺ (7), 130 CF₂Se⁺ (46), 111 CFSe⁺ (12), 85 CF₂Cl⁺ (100), 80 Se⁺ (21), 69 CF₃⁺ (49), 50 CF_2 + (5), 31 CF + (15). The signals of fragments containing one or two Se atoms exhibited the expected isotope pattern.

IR spectrum (10 mbar): 1272 (w), 1180 (vs), 1109 (vs), 866 (vs), 845 (vs), 743 (s), 635 (w) cm⁻¹.

Spectroscopic Analysis

NMR spectra were obtained with a Brucker WM 250 instrument operating at 250.13 (¹H), 235.36 (¹ 9 F), 62.90 (¹ 3 C), and 47.71 MHz (⁷⁷Se). Absorptions to low field (high frequency) of reference signals (TMS, CCl₃F ext., TMS, (CH₃)₂Se ext., respectively) are assigned positive chemical shift values. Mass spectra were recorded on a Varian MAT CH 7 spectrometer (electron energy 70 eV). IR spectra were run on a Perkin-Elmer 325 spectrophotometer.

ACKNOWLEDGEMENTS

Thanks are due to the Fonds der Chemischen Industrie and Professor A. Haas for support of this work.

REFERENCES

- 1 P. Dehnert, J. Grobe, W. Hildebrand and D. Le Van, <u>Z. Naturforsch.</u>, <u>34b</u> (1979) 1646.
- 2 A. Haas, B. Koch and N. Welcman, Chem. Ztg., 98 (1974) 511.
- 3 A. Haas, B. Koch and N. Welcman, <u>Z. anorg. allg. Chem.</u>, <u>427</u> (1976) 114.
- 4 W. Gombler, <u>J. Am. Chem. Soc.</u>, <u>104</u> (1982) 6616.
- 5 W. Gombler, Habilitationsschrift, Bochum (1982).
- 6 W. Gombler, paper in preparation.
- 7 W. Gombler, Spectrochim. Acta, 37A (1981) 57.
- 8 W. Gombler, Z. Naturforsch., 36b (1981) 535.
- 9 J. W. Dale, H. J. Emeleus and R. N. Haszeldine, <u>J. Chem.</u> <u>Soc.</u>, (1958) 2939.
- 10 N. N. Yarovenko, V. N. Shemania and G. B. Gazieva, <u>J. Gen.</u> <u>Chem. USSR</u>, <u>29</u> (1959) 924.
- 11 W. Gombler and H. Willner, DE-OS 3 138 815 (1983).
- 12 W. Gombler and H. Willner, <u>Int. Lab.</u>, <u>14</u> (1984) 84.